in_pcbgroup.c 17.3 KB
Newer Older
1
/*-
2
3
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 * Copyright (c) 2010-2011 Juniper Networks, Inc.
 * All rights reserved.
 *
 * This software was developed by Robert N. M. Watson under contract
 * to Juniper Networks, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>

__FBSDID("$FreeBSD$");

#include "opt_inet6.h"
37
#include "opt_rss.h"
38
39
40
41
42
43
44

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/smp.h>
45
#include <sys/socket.h>
46
47
#include <sys/socketvar.h>

48
49
#include <net/rss_config.h>

50
#include <netinet/in.h>
51

52
#include <netinet/in_pcb.h>
53
#include <netinet/in_rss.h>
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#ifdef INET6
#include <netinet6/in6_pcb.h>
#endif /* INET6 */

/*
 * pcbgroups, or "connection groups" are based on Willman, Rixner, and Cox's
 * 2006 USENIX paper, "An Evaluation of Network Stack Parallelization
 * Strategies in Modern Operating Systems".  This implementation differs
 * significantly from that described in the paper, in that it attempts to
 * introduce not just notions of affinity for connections and distribute work
 * so as to reduce lock contention, but also align those notions with
 * hardware work distribution strategies such as RSS.  In this construction,
 * connection groups supplement, rather than replace, existing reservation
 * tables for protocol 4-tuples, offering CPU-affine lookup tables with
 * minimal cache line migration and lock contention during steady state
 * operation.
 *
71
72
73
74
75
76
77
 * Hardware-offloaded checksums are often inefficient in software -- for
 * example, Toeplitz, specified by RSS, introduced a significant overhead if
 * performed during per-packge processing.  It is therefore desirable to fall
 * back on traditional reservation table lookups without affinity where
 * hardware-offloaded checksums aren't available, such as for traffic over
 * non-RSS interfaces.
 *
78
79
80
81
82
83
84
85
86
87
88
89
 * Internet protocols, such as UDP and TCP, register to use connection groups
 * by providing an ipi_hashfields value other than IPI_HASHFIELDS_NONE; this
 * indicates to the connection group code whether a 2-tuple or 4-tuple is
 * used as an argument to hashes that assign a connection to a particular
 * group.  This must be aligned with any hardware offloaded distribution
 * model, such as RSS or similar approaches taken in embedded network boards.
 * Wildcard sockets require special handling, as in Willman 2006, and are
 * shared between connection groups -- while being protected by group-local
 * locks.  This means that connection establishment and teardown can be
 * signficantly more expensive than without connection groups, but that
 * steady-state processing can be significantly faster.
 *
90
91
92
93
94
 * When RSS is used, certain connection group parameters, such as the number
 * of groups, are provided by the RSS implementation, found in in_rss.c.
 * Otherwise, in_pcbgroup.c selects possible sensible parameters
 * corresponding to the degree of parallelism exposed by netisr.
 *
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
 * Most of the implementation of connection groups is in this file; however,
 * connection group lookup is implemented in in_pcb.c alongside reservation
 * table lookups -- see in_pcblookup_group().
 *
 * TODO:
 *
 * Implement dynamic rebalancing of buckets with connection groups; when
 * load is unevenly distributed, search for more optimal balancing on
 * demand.  This might require scaling up the number of connection groups
 * by <<1.
 *
 * Provide an IP 2-tuple or 4-tuple netisr m2cpu handler based on connection
 * groups for ip_input and ip6_input, allowing non-offloaded work
 * distribution.
 *
 * Expose effective CPU affinity of connections to userspace using socket
 * options.
 *
 * Investigate per-connection affinity overrides based on socket options; an
 * option could be set, certainly resulting in work being distributed
 * differently in software, and possibly propagated to supporting hardware
 * with TCAMs or hardware hash tables.  This might require connections to
 * exist in more than one connection group at a time.
 *
 * Hook netisr thread reconfiguration events, and propagate those to RSS so
 * that rebalancing can occur when the thread pool grows or shrinks.
 *
 * Expose per-pcbgroup statistics to userspace monitoring tools such as
 * netstat, in order to allow better debugging and profiling.
 */

void
in_pcbgroup_init(struct inpcbinfo *pcbinfo, u_int hashfields,
    int hash_nelements)
{
	struct inpcbgroup *pcbgroup;
	u_int numpcbgroups, pgn;

	/*
	 * Only enable connection groups for a protocol if it has been
	 * specifically requested.
	 */
	if (hashfields == IPI_HASHFIELDS_NONE)
		return;

	/*
	 * Connection groups are about multi-processor load distribution,
	 * lock contention, and connection CPU affinity.  As such, no point
	 * in turning them on for a uniprocessor machine, it only wastes
	 * memory.
	 */
	if (mp_ncpus == 1)
		return;

149
#ifdef RSS
150
	/*
151
152
153
154
155
156
157
158
159
160
161
162
163
164
	 * If we're using RSS, then RSS determines the number of connection
	 * groups to use: one connection group per RSS bucket.  If for some
	 * reason RSS isn't able to provide a number of buckets, disable
	 * connection groups entirely.
	 *
	 * XXXRW: Can this ever happen?
	 */
	numpcbgroups = rss_getnumbuckets();
	if (numpcbgroups == 0)
		return;
#else
	/*
	 * Otherwise, we'll just use one per CPU for now.  If we decide to
	 * do dynamic rebalancing a la RSS, we'll need similar logic here.
165
166
	 */
	numpcbgroups = mp_ncpus;
167
#endif
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

	pcbinfo->ipi_hashfields = hashfields;
	pcbinfo->ipi_pcbgroups = malloc(numpcbgroups *
	    sizeof(*pcbinfo->ipi_pcbgroups), M_PCB, M_WAITOK | M_ZERO);
	pcbinfo->ipi_npcbgroups = numpcbgroups;
	pcbinfo->ipi_wildbase = hashinit(hash_nelements, M_PCB,
	    &pcbinfo->ipi_wildmask);
	for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++) {
		pcbgroup = &pcbinfo->ipi_pcbgroups[pgn];
		pcbgroup->ipg_hashbase = hashinit(hash_nelements, M_PCB,
		    &pcbgroup->ipg_hashmask);
		INP_GROUP_LOCK_INIT(pcbgroup, "pcbgroup");

		/*
		 * Initialise notional affinity of the pcbgroup -- for RSS,
183
184
185
186
187
188
		 * we want the same notion of affinity as NICs to be used.  In
		 * the non-RSS case, just round robin for the time being.
		 *
		 * XXXRW: The notion of a bucket to CPU mapping is common at
		 * both pcbgroup and RSS layers -- does that mean that we
		 * should migrate it all from RSS to here, and just leave RSS
189
		 * responsible only for providing hashing and mapping functions?
190
		 */
191
192
193
#ifdef RSS
		pcbgroup->ipg_cpu = rss_getcpu(pgn);
#else
194
		pcbgroup->ipg_cpu = (pgn % mp_ncpus);
195
#endif
196
197
198
199
200
201
202
203
204
205
206
207
208
209
	}
}

void
in_pcbgroup_destroy(struct inpcbinfo *pcbinfo)
{
	struct inpcbgroup *pcbgroup;
	u_int pgn;

	if (pcbinfo->ipi_npcbgroups == 0)
		return;

	for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++) {
		pcbgroup = &pcbinfo->ipi_pcbgroups[pgn];
210
		KASSERT(CK_LIST_EMPTY(pcbinfo->ipi_listhead),
211
212
213
214
215
216
217
218
219
220
221
222
223
224
		    ("in_pcbinfo_destroy: listhead not empty"));
		INP_GROUP_LOCK_DESTROY(pcbgroup);
		hashdestroy(pcbgroup->ipg_hashbase, M_PCB,
		    pcbgroup->ipg_hashmask);
	}
	hashdestroy(pcbinfo->ipi_wildbase, M_PCB, pcbinfo->ipi_wildmask);
	free(pcbinfo->ipi_pcbgroups, M_PCB);
	pcbinfo->ipi_pcbgroups = NULL;
	pcbinfo->ipi_npcbgroups = 0;
	pcbinfo->ipi_hashfields = 0;
}

/*
 * Given a hash of whatever the covered tuple might be, return a pcbgroup
225
226
 * index.  Where RSS is supported, try to align bucket selection with RSS CPU
 * affinity strategy.
227
228
229
230
231
 */
static __inline u_int
in_pcbgroup_getbucket(struct inpcbinfo *pcbinfo, uint32_t hash)
{

232
233
234
#ifdef RSS
	return (rss_getbucket(hash));
#else
235
	return (hash % pcbinfo->ipi_npcbgroups);
236
#endif
237
238
239
240
}

/*
 * Map a (hashtype, hash) tuple into a connection group, or NULL if the hash
241
242
243
 * information is insufficient to identify the pcbgroup.  This might occur if
 * a TCP packet turns up with a 2-tuple hash, or if an RSS hash is present but
 * RSS is not compiled into the kernel.
244
245
246
247
248
 */
struct inpcbgroup *
in_pcbgroup_byhash(struct inpcbinfo *pcbinfo, u_int hashtype, uint32_t hash)
{

249
250
251
#ifdef RSS
	if ((pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
	    hashtype == M_HASHTYPE_RSS_TCP_IPV4) ||
252
253
	    (pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
	    hashtype == M_HASHTYPE_RSS_UDP_IPV4) ||
254
255
256
257
258
	    (pcbinfo->ipi_hashfields == IPI_HASHFIELDS_2TUPLE &&
	    hashtype == M_HASHTYPE_RSS_IPV4))
		return (&pcbinfo->ipi_pcbgroups[
		    in_pcbgroup_getbucket(pcbinfo, hash)]);
#endif
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
	return (NULL);
}

static struct inpcbgroup *
in_pcbgroup_bymbuf(struct inpcbinfo *pcbinfo, struct mbuf *m)
{

	return (in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
	    m->m_pkthdr.flowid));
}

struct inpcbgroup *
in_pcbgroup_bytuple(struct inpcbinfo *pcbinfo, struct in_addr laddr,
    u_short lport, struct in_addr faddr, u_short fport)
{
	uint32_t hash;

276
277
278
279
280
	/*
	 * RSS note: we pass foreign addr/port as source, and local addr/port
	 * as destination, as we want to align with what the hardware is
	 * doing.
	 */
281
282
	switch (pcbinfo->ipi_hashfields) {
	case IPI_HASHFIELDS_4TUPLE:
283
284
285
#ifdef RSS
		hash = rss_hash_ip4_4tuple(faddr, fport, laddr, lport);
#else
286
		hash = faddr.s_addr ^ fport;
287
#endif
288
289
290
		break;

	case IPI_HASHFIELDS_2TUPLE:
291
292
293
#ifdef RSS
		hash = rss_hash_ip4_2tuple(faddr, laddr);
#else
294
		hash = faddr.s_addr ^ laddr.s_addr;
295
#endif
296
297
298
299
300
301
302
303
304
305
306
307
		break;

	default:
		hash = 0;
	}
	return (&pcbinfo->ipi_pcbgroups[in_pcbgroup_getbucket(pcbinfo,
	    hash)]);
}

struct inpcbgroup *
in_pcbgroup_byinpcb(struct inpcb *inp)
{
308
309
310
311
312
313
314
315
316
317
318
319
#ifdef	RSS
	/*
	 * Listen sockets with INP_RSS_BUCKET_SET set have a pre-determined
	 * RSS bucket and thus we should use this pcbgroup, rather than
	 * using a tuple or hash.
	 *
	 * XXX should verify that there's actually pcbgroups and inp_rss_listen_bucket
	 * fits in that!
	 */
	if (inp->inp_flags2 & INP_RSS_BUCKET_SET)
		return (&inp->inp_pcbinfo->ipi_pcbgroups[inp->inp_rss_listen_bucket]);
#endif
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

	return (in_pcbgroup_bytuple(inp->inp_pcbinfo, inp->inp_laddr,
	    inp->inp_lport, inp->inp_faddr, inp->inp_fport));
}

static void
in_pcbwild_add(struct inpcb *inp)
{
	struct inpcbinfo *pcbinfo;
	struct inpcbhead *head;
	u_int pgn;

	INP_WLOCK_ASSERT(inp);
	KASSERT(!(inp->inp_flags2 & INP_PCBGROUPWILD),
	    ("%s: is wild",__func__));

	pcbinfo = inp->inp_pcbinfo;
	for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
		INP_GROUP_LOCK(&pcbinfo->ipi_pcbgroups[pgn]);
	head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, inp->inp_lport,
	    0, pcbinfo->ipi_wildmask)];
341
	CK_LIST_INSERT_HEAD(head, inp, inp_pcbgroup_wild);
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
	inp->inp_flags2 |= INP_PCBGROUPWILD;
	for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
		INP_GROUP_UNLOCK(&pcbinfo->ipi_pcbgroups[pgn]);
}

static void
in_pcbwild_remove(struct inpcb *inp)
{
	struct inpcbinfo *pcbinfo;
	u_int pgn;

	INP_WLOCK_ASSERT(inp);
	KASSERT((inp->inp_flags2 & INP_PCBGROUPWILD),
	    ("%s: not wild", __func__));

	pcbinfo = inp->inp_pcbinfo;
	for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
		INP_GROUP_LOCK(&pcbinfo->ipi_pcbgroups[pgn]);
360
	CK_LIST_REMOVE(inp, inp_pcbgroup_wild);
361
362
363
364
365
366
367
368
	for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
		INP_GROUP_UNLOCK(&pcbinfo->ipi_pcbgroups[pgn]);
	inp->inp_flags2 &= ~INP_PCBGROUPWILD;
}

static __inline int
in_pcbwild_needed(struct inpcb *inp)
{
369
370
371
372
373
374
375
376
377
#ifdef	RSS
	/*
	 * If it's a listen socket and INP_RSS_BUCKET_SET is set,
	 * it's a wildcard socket _but_ it's in a specific pcbgroup.
	 * Thus we don't treat it as a pcbwild inp.
	 */
	if (inp->inp_flags2 & INP_RSS_BUCKET_SET)
		return (0);
#endif
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

#ifdef INET6
	if (inp->inp_vflag & INP_IPV6)
		return (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr));
	else
#endif
		return (inp->inp_faddr.s_addr == htonl(INADDR_ANY));
}

static void
in_pcbwild_update_internal(struct inpcb *inp)
{
	int wildcard_needed;

	wildcard_needed = in_pcbwild_needed(inp);
	if (wildcard_needed && !(inp->inp_flags2 & INP_PCBGROUPWILD))
		in_pcbwild_add(inp);
	else if (!wildcard_needed && (inp->inp_flags2 & INP_PCBGROUPWILD))
		in_pcbwild_remove(inp);
}

/*
 * Update the pcbgroup of an inpcb, which might include removing an old
 * pcbgroup reference and/or adding a new one.  Wildcard processing is not
 * performed here, although ideally we'll never install a pcbgroup for a
 * wildcard inpcb (asserted below).
 */
static void
in_pcbgroup_update_internal(struct inpcbinfo *pcbinfo,
    struct inpcbgroup *newpcbgroup, struct inpcb *inp)
{
	struct inpcbgroup *oldpcbgroup;
	struct inpcbhead *pcbhash;
	uint32_t hashkey_faddr;

	INP_WLOCK_ASSERT(inp);

	oldpcbgroup = inp->inp_pcbgroup;
	if (oldpcbgroup != NULL && oldpcbgroup != newpcbgroup) {
		INP_GROUP_LOCK(oldpcbgroup);
418
		CK_LIST_REMOVE(inp, inp_pcbgrouphash);
419
420
421
422
423
424
		inp->inp_pcbgroup = NULL;
		INP_GROUP_UNLOCK(oldpcbgroup);
	}
	if (newpcbgroup != NULL && oldpcbgroup != newpcbgroup) {
#ifdef INET6
		if (inp->inp_vflag & INP_IPV6)
425
			hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
426
427
428
429
		else
#endif
			hashkey_faddr = inp->inp_faddr.s_addr;
		INP_GROUP_LOCK(newpcbgroup);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
		/*
		 * If the inp is an RSS bucket wildcard entry, ensure
		 * that the PCB hash is calculated correctly.
		 *
		 * The wildcard hash calculation differs from the
		 * non-wildcard definition.  The source address is
		 * INADDR_ANY and the far port is 0.
		 */
		if (inp->inp_flags2 & INP_RSS_BUCKET_SET) {
			pcbhash = &newpcbgroup->ipg_hashbase[
			    INP_PCBHASH(INADDR_ANY, inp->inp_lport, 0,
			    newpcbgroup->ipg_hashmask)];
		} else {
			pcbhash = &newpcbgroup->ipg_hashbase[
			    INP_PCBHASH(hashkey_faddr, inp->inp_lport,
			    inp->inp_fport,
			    newpcbgroup->ipg_hashmask)];
		}
448
		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_pcbgrouphash);
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
		inp->inp_pcbgroup = newpcbgroup;
		INP_GROUP_UNLOCK(newpcbgroup);
	}

	KASSERT(!(newpcbgroup != NULL && in_pcbwild_needed(inp)),
	    ("%s: pcbgroup and wildcard!", __func__));
}

/*
 * Two update paths: one in which the 4-tuple on an inpcb has been updated
 * and therefore connection groups may need to change (or a wildcard entry
 * may needed to be installed), and another in which the 4-tuple has been
 * set as a result of a packet received, in which case we may be able to use
 * the hash on the mbuf to avoid doing a software hash calculation for RSS.
 *
 * In each case: first, let the wildcard code have a go at placing it as a
 * wildcard socket.  If it was a wildcard, or if the connection has been
 * dropped, then no pcbgroup is required (so potentially clear it);
 * otherwise, calculate and update the pcbgroup for the inpcb.
 */
void
in_pcbgroup_update(struct inpcb *inp)
{
	struct inpcbinfo *pcbinfo;
	struct inpcbgroup *newpcbgroup;

	INP_WLOCK_ASSERT(inp);

	pcbinfo = inp->inp_pcbinfo;
	if (!in_pcbgroup_enabled(pcbinfo))
		return;

	in_pcbwild_update_internal(inp);
	if (!(inp->inp_flags2 & INP_PCBGROUPWILD) &&
	    !(inp->inp_flags & INP_DROPPED)) {
#ifdef INET6
		if (inp->inp_vflag & INP_IPV6)
			newpcbgroup = in6_pcbgroup_byinpcb(inp);
		else
#endif
			newpcbgroup = in_pcbgroup_byinpcb(inp);
	} else
		newpcbgroup = NULL;
	in_pcbgroup_update_internal(pcbinfo, newpcbgroup, inp);
}

void
in_pcbgroup_update_mbuf(struct inpcb *inp, struct mbuf *m)
{
	struct inpcbinfo *pcbinfo;
	struct inpcbgroup *newpcbgroup;

	INP_WLOCK_ASSERT(inp);

	pcbinfo = inp->inp_pcbinfo;
	if (!in_pcbgroup_enabled(pcbinfo))
		return;

	/*
	 * Possibly should assert !INP_PCBGROUPWILD rather than testing for
	 * it; presumably this function should never be called for anything
	 * other than non-wildcard socket?
	 */
	in_pcbwild_update_internal(inp);
	if (!(inp->inp_flags2 & INP_PCBGROUPWILD) &&
	    !(inp->inp_flags & INP_DROPPED)) {
		newpcbgroup = in_pcbgroup_bymbuf(pcbinfo, m);
#ifdef INET6
		if (inp->inp_vflag & INP_IPV6) {
			if (newpcbgroup == NULL)
				newpcbgroup = in6_pcbgroup_byinpcb(inp);
		} else {
#endif
			if (newpcbgroup == NULL)
				newpcbgroup = in_pcbgroup_byinpcb(inp);
#ifdef INET6
		}
#endif
	} else
		newpcbgroup = NULL;
	in_pcbgroup_update_internal(pcbinfo, newpcbgroup, inp);
}

/*
 * Remove pcbgroup entry and optional pcbgroup wildcard entry for this inpcb.
 */
void
in_pcbgroup_remove(struct inpcb *inp)
{
	struct inpcbgroup *pcbgroup;

	INP_WLOCK_ASSERT(inp);

	if (!in_pcbgroup_enabled(inp->inp_pcbinfo))
		return;

	if (inp->inp_flags2 & INP_PCBGROUPWILD)
		in_pcbwild_remove(inp);

	pcbgroup = inp->inp_pcbgroup;
	if (pcbgroup != NULL) {
		INP_GROUP_LOCK(pcbgroup);
551
		CK_LIST_REMOVE(inp, inp_pcbgrouphash);
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
		inp->inp_pcbgroup = NULL;
		INP_GROUP_UNLOCK(pcbgroup);
	}
}

/*
 * Query whether or not it is appropriate to use pcbgroups to look up inpcbs
 * for a protocol.
 */
int
in_pcbgroup_enabled(struct inpcbinfo *pcbinfo)
{

	return (pcbinfo->ipi_npcbgroups > 0);
}