uart_dev_ns8250.c 26.1 KB
Newer Older
1
/*-
2
3
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 * Copyright (c) 2003 Marcel Moolenaar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

29
#include "opt_platform.h"
30
#include "opt_uart.h"
31

32
33
34
35
36
37
38
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
39
40
#include <sys/kernel.h>
#include <sys/sysctl.h>
41
42
#include <machine/bus.h>

43
44
45
46
47
48
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif

49
50
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
51
52
53
#ifdef FDT
#include <dev/uart/uart_cpu_fdt.h>
#endif
54
#include <dev/uart/uart_bus.h>
55
#include <dev/uart/uart_dev_ns8250.h>
56
#include <dev/uart/uart_ppstypes.h>
57
58

#include <dev/ic/ns16550.h>
59
60
61
62
63

#include "uart_if.h"

#define	DEFAULT_RCLK	1843200

64
65
66
67
68
69
70
71
72
73
/*
 * Set the default baudrate tolerance to 3.0%.
 *
 * Some embedded boards have odd reference clocks (eg 25MHz)
 * and we need to handle higher variances in the target baud rate.
 */
#ifndef	UART_DEV_TOLERANCE_PCT
#define	UART_DEV_TOLERANCE_PCT	30
#endif	/* UART_DEV_TOLERANCE_PCT */

74
static int broken_txfifo = 0;
75
SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
76
77
	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");

78
79
80
81
82
83
84
/*
 * Clear pending interrupts. THRE is cleared by reading IIR. Data
 * that may have been received gets lost here.
 */
static void
ns8250_clrint(struct uart_bas *bas)
{
85
	uint8_t iir, lsr;
86
87
88
89

	iir = uart_getreg(bas, REG_IIR);
	while ((iir & IIR_NOPEND) == 0) {
		iir &= IIR_IMASK;
90
91
92
93
94
		if (iir == IIR_RLS) {
			lsr = uart_getreg(bas, REG_LSR);
			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
				(void)uart_getreg(bas, REG_DATA);
		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
			(void)uart_getreg(bas, REG_DATA);
		else if (iir == IIR_MLSC)
			(void)uart_getreg(bas, REG_MSR);
		uart_barrier(bas);
		iir = uart_getreg(bas, REG_IIR);
	}
}

static int
ns8250_delay(struct uart_bas *bas)
{
	int divisor;
	u_char lcr;

	lcr = uart_getreg(bas, REG_LCR);
	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
	uart_barrier(bas);
112
	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
113
114
115
116
117
	uart_barrier(bas);
	uart_setreg(bas, REG_LCR, lcr);
	uart_barrier(bas);

	/* 1/10th the time to transmit 1 character (estimate). */
118
119
120
	if (divisor <= 134)
		return (16000000 * divisor / bas->rclk);
	return (16000 * divisor / (bas->rclk / 1000));
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
}

static int
ns8250_divisor(int rclk, int baudrate)
{
	int actual_baud, divisor;
	int error;

	if (baudrate == 0)
		return (0);

	divisor = (rclk / (baudrate << 3) + 1) >> 1;
	if (divisor == 0 || divisor >= 65536)
		return (0);
	actual_baud = rclk / (divisor << 4);

	/* 10 times error in percent: */
	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;

140
141
	/* enforce maximum error tolerance: */
	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
		return (0);

	return (divisor);
}

static int
ns8250_drain(struct uart_bas *bas, int what)
{
	int delay, limit;

	delay = ns8250_delay(bas);

	if (what & UART_DRAIN_TRANSMITTER) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop when the hardware is broken. Make the
		 * limit high enough to handle large FIFOs.
		 */
		limit = 10*1024;
		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
			DELAY(delay);
		if (limit == 0) {
			/* printf("ns8250: transmitter appears stuck... "); */
			return (EIO);
		}
	}

	if (what & UART_DRAIN_RECEIVER) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop when the hardware is broken. Make the
		 * limit high enough to handle large FIFOs and integrated
		 * UARTs. The HP rx2600 for example has 3 UARTs on the
		 * management board that tend to get a lot of data send
		 * to it when the UART is first activated.
		 */
		limit=10*4096;
		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
			(void)uart_getreg(bas, REG_DATA);
			uart_barrier(bas);
			DELAY(delay << 2);
		}
		if (limit == 0) {
			/* printf("ns8250: receiver appears broken... "); */
			return (EIO);
		}
	}

	return (0);
}

/*
 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
 * drained. WARNING: this function clobbers the FIFO setting!
 */
static void
ns8250_flush(struct uart_bas *bas, int what)
{
	uint8_t fcr;

	fcr = FCR_ENABLE;
203
204
205
#ifdef CPU_XBURST
	fcr |= FCR_UART_ON;
#endif
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
	if (what & UART_FLUSH_TRANSMITTER)
		fcr |= FCR_XMT_RST;
	if (what & UART_FLUSH_RECEIVER)
		fcr |= FCR_RCV_RST;
	uart_setreg(bas, REG_FCR, fcr);
	uart_barrier(bas);
}

static int
ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
    int parity)
{
	int divisor;
	uint8_t lcr;

	lcr = 0;
	if (databits >= 8)
		lcr |= LCR_8BITS;
	else if (databits == 7)
		lcr |= LCR_7BITS;
	else if (databits == 6)
		lcr |= LCR_6BITS;
	else
		lcr |= LCR_5BITS;
	if (stopbits > 1)
		lcr |= LCR_STOPB;
	lcr |= parity << 3;

	/* Set baudrate. */
	if (baudrate > 0) {
		divisor = ns8250_divisor(bas->rclk, baudrate);
		if (divisor == 0)
			return (EINVAL);
239
240
		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
		uart_barrier(bas);
241
242
		uart_setreg(bas, REG_DLL, divisor & 0xff);
		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
		uart_barrier(bas);
	}

	/* Set LCR and clear DLAB. */
	uart_setreg(bas, REG_LCR, lcr);
	uart_barrier(bas);
	return (0);
}

/*
 * Low-level UART interface.
 */
static int ns8250_probe(struct uart_bas *bas);
static void ns8250_init(struct uart_bas *bas, int, int, int, int);
static void ns8250_term(struct uart_bas *bas);
static void ns8250_putc(struct uart_bas *bas, int);
259
static int ns8250_rxready(struct uart_bas *bas);
260
static int ns8250_getc(struct uart_bas *bas, struct mtx *);
261

262
struct uart_ops uart_ns8250_ops = {
263
264
265
266
	.probe = ns8250_probe,
	.init = ns8250_init,
	.term = ns8250_term,
	.putc = ns8250_putc,
267
	.rxready = ns8250_rxready,
268
269
270
271
272
273
	.getc = ns8250_getc,
};

static int
ns8250_probe(struct uart_bas *bas)
{
274
	u_char val;
275

276
277
278
279
#ifdef CPU_XBURST
	uart_setreg(bas, REG_FCR, FCR_UART_ON);
#endif

280
281
282
283
	/* Check known 0 bits that don't depend on DLAB. */
	val = uart_getreg(bas, REG_IIR);
	if (val & 0x30)
		return (ENXIO);
284
285
286
287
288
289
	/*
	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
	 * chip, but otherwise doesn't seem to have a function. In
	 * other words, uart(4) works regardless. Ignore that bit so
	 * the probe succeeds.
	 */
290
	val = uart_getreg(bas, REG_MCR);
291
	if (val & 0xa0)
292
293
294
295
296
297
298
299
300
		return (ENXIO);

	return (0);
}

static void
ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
    int parity)
{
301
	u_char ier, val;
302
303
304
305
306
307

	if (bas->rclk == 0)
		bas->rclk = DEFAULT_RCLK;
	ns8250_param(bas, baudrate, databits, stopbits, parity);

	/* Disable all interrupt sources. */
308
309
310
311
312
313
	/*
	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
	 * UARTs split the receive time-out interrupt bit out separately as
	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
	 */
	ier = uart_getreg(bas, REG_IER) & 0xe0;
314
	uart_setreg(bas, REG_IER, ier);
315
316
317
	uart_barrier(bas);

	/* Disable the FIFO (if present). */
318
319
	val = 0;
#ifdef CPU_XBURST
320
	val |= FCR_UART_ON;
321
322
#endif
	uart_setreg(bas, REG_FCR, val);
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
	uart_barrier(bas);

	/* Set RTS & DTR. */
	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
	uart_barrier(bas);

	ns8250_clrint(bas);
}

static void
ns8250_term(struct uart_bas *bas)
{

	/* Clear RTS & DTR. */
	uart_setreg(bas, REG_MCR, MCR_IE);
	uart_barrier(bas);
}

static void
ns8250_putc(struct uart_bas *bas, int c)
{
344
	int limit;
345

346
	limit = 250000;
347
	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
348
		DELAY(4);
349
	uart_setreg(bas, REG_DATA, c);
350
	uart_barrier(bas);
351
352
353
}

static int
354
ns8250_rxready(struct uart_bas *bas)
355
356
{

357
	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
358
359
360
}

static int
361
ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
362
{
363
	int c;
364
365

	uart_lock(hwmtx);
366

367
368
	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
		uart_unlock(hwmtx);
369
		DELAY(4);
370
371
372
373
374
375
376
377
		uart_lock(hwmtx);
	}

	c = uart_getreg(bas, REG_DATA);

	uart_unlock(hwmtx);

	return (c);
378
379
380
381
382
383
384
385
386
387
388
389
390
391
}

static kobj_method_t ns8250_methods[] = {
	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
	KOBJMETHOD(uart_param,		ns8250_bus_param),
	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
392
393
	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
394
395
396
397
	{ 0, 0 }
};

struct uart_class uart_ns8250_class = {
398
	"ns8250",
399
400
	ns8250_methods,
	sizeof(struct ns8250_softc),
401
	.uc_ops = &uart_ns8250_ops,
402
	.uc_range = 8,
403
404
	.uc_rclk = DEFAULT_RCLK,
	.uc_rshift = 0
405
406
};

407
408
409
#ifdef FDT
static struct ofw_compat_data compat_data[] = {
	{"ns16550",		(uintptr_t)&uart_ns8250_class},
410
	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
411
412
413
414
415
	{NULL,			(uintptr_t)NULL},
};
UART_FDT_CLASS_AND_DEVICE(compat_data);
#endif

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/* Use token-pasting to form SER_ and MSR_ named constants. */
#define	SER(sig)	SER_##sig
#define	SERD(sig)	SER_D##sig
#define	MSR(sig)	MSR_##sig
#define	MSRD(sig)	MSR_D##sig

/*
 * Detect signal changes using software delta detection.  The previous state of
 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
 * new state of both the signal and the delta bits.
 */
#define SIGCHGSW(var, msr, sig)					\
	if ((msr) & MSR(sig)) {					\
		if ((var & SER(sig)) == 0)			\
			var |= SERD(sig) | SER(sig);		\
	} else {						\
		if ((var & SER(sig)) != 0)			\
			var = SERD(sig) | (var & ~SER(sig));	\
	}

/*
 * Detect signal changes using the hardware msr delta bits.  This is currently
 * used only when PPS timing information is being captured using the "narrow
 * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
 * by time the interrupt handler is invoked.  The hardware will latch the fact
 * that it changed in the delta bits.
 */
#define SIGCHGHW(var, msr, sig)					\
	if ((msr) & MSRD(sig)) {				\
		if (((msr) & MSR(sig)) != 0)			\
			var |= SERD(sig) | SER(sig);		\
		else						\
			var = SERD(sig) | (var & ~SER(sig));	\
450
451
	}

452
int
453
454
455
456
ns8250_bus_attach(struct uart_softc *sc)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
457
	unsigned int ivar;
458
459
460
461
462
463
#ifdef FDT
	phandle_t node;
	pcell_t cell;
#endif

#ifdef FDT
464
	/* Check whether uart has a broken txfifo. */
465
	node = ofw_bus_get_node(sc->sc_dev);
466
467
	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
		broken_txfifo =  cell ? 1 : 0;
468
#endif
469
470
471
472

	bas = &sc->sc_bas;

	ns8250->mcr = uart_getreg(bas, REG_MCR);
473
	ns8250->fcr = FCR_ENABLE;
474
475
476
#ifdef CPU_XBURST
	ns8250->fcr |= FCR_UART_ON;
#endif
477
478
479
480
481
482
483
484
485
486
487
488
	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
	    &ivar)) {
		if (UART_FLAGS_FCR_RX_LOW(ivar)) 
			ns8250->fcr |= FCR_RX_LOW;
		else if (UART_FLAGS_FCR_RX_MEDL(ivar)) 
			ns8250->fcr |= FCR_RX_MEDL;
		else if (UART_FLAGS_FCR_RX_HIGH(ivar)) 
			ns8250->fcr |= FCR_RX_HIGH;
		else
			ns8250->fcr |= FCR_RX_MEDH;
	} else 
		ns8250->fcr |= FCR_RX_MEDH;
489
490
491
492
493
494
495
496
497
498
499
500
501
	
	/* Get IER mask */
	ivar = 0xf0;
	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
	    &ivar);
	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
	
	/* Get IER RX interrupt bits */
	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
	    &ivar);
	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
	
502
503
504
505
506
	uart_setreg(bas, REG_FCR, ns8250->fcr);
	uart_barrier(bas);
	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);

	if (ns8250->mcr & MCR_DTR)
507
		sc->sc_hwsig |= SER_DTR;
508
	if (ns8250->mcr & MCR_RTS)
509
		sc->sc_hwsig |= SER_RTS;
510
511
512
	ns8250_bus_getsig(sc);

	ns8250_clrint(bas);
513
514
	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
	ns8250->ier |= ns8250->ier_rxbits;
515
516
	uart_setreg(bas, REG_IER, ns8250->ier);
	uart_barrier(bas);
517
518
519
520
521
522
523
524
525
526
527
528

	/*
	 * Timing of the H/W access was changed with r253161 of uart_core.c
	 * It has been observed that an ITE IT8513E would signal a break
	 * condition with pretty much every character it received, unless
	 * it had enough time to settle between ns8250_bus_attach() and
	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
	 * It's not understood why the UART chip behaves this way and it
	 * could very well be that the DELAY make the H/W work in the same
	 * accidental manner as before. More analysis is warranted, but
	 * at least now we fixed a known regression.
	 */
529
	DELAY(200);
530
531
532
	return (0);
}

533
int
534
535
ns8250_bus_detach(struct uart_softc *sc)
{
536
	struct ns8250_softc *ns8250;
537
	struct uart_bas *bas;
538
	u_char ier;
539

540
	ns8250 = (struct ns8250_softc *)sc;
541
	bas = &sc->sc_bas;
542
	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
543
	uart_setreg(bas, REG_IER, ier);
544
545
546
547
548
	uart_barrier(bas);
	ns8250_clrint(bas);
	return (0);
}

549
int
550
551
552
553
ns8250_bus_flush(struct uart_softc *sc, int what)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
554
	int error;
555
556

	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
557
	uart_lock(sc->sc_hwmtx);
558
	if (sc->sc_rxfifosz > 1) {
559
560
561
		ns8250_flush(bas, what);
		uart_setreg(bas, REG_FCR, ns8250->fcr);
		uart_barrier(bas);
562
563
564
		error = 0;
	} else
		error = ns8250_drain(bas, what);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
565
	uart_unlock(sc->sc_hwmtx);
566
	return (error);
567
568
}

569
int
570
571
ns8250_bus_getsig(struct uart_softc *sc)
{
572
	uint32_t old, sig;
573
574
	uint8_t msr;

575
576
577
578
579
580
	/*
	 * The delta bits are reputed to be broken on some hardware, so use
	 * software delta detection by default.  Use the hardware delta bits
	 * when capturing PPS pulses which are too narrow for software detection
	 * to see the edges.  Hardware delta for RI doesn't work like the
	 * others, so always use software for it.  Other threads may be changing
581
	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
582
583
584
585
	 * update without other changes happening.  Note that the SIGCHGxx()
	 * macros carefully preserve the delta bits when we have to loop several
	 * times and a signal transitions between iterations.
	 */
586
587
588
	do {
		old = sc->sc_hwsig;
		sig = old;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
589
		uart_lock(sc->sc_hwmtx);
590
		msr = uart_getreg(&sc->sc_bas, REG_MSR);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
591
		uart_unlock(sc->sc_hwmtx);
592
593
594
595
596
597
598
599
600
601
602
		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
			SIGCHGHW(sig, msr, DSR);
			SIGCHGHW(sig, msr, CTS);
			SIGCHGHW(sig, msr, DCD);
		} else {
			SIGCHGSW(sig, msr, DSR);
			SIGCHGSW(sig, msr, CTS);
			SIGCHGSW(sig, msr, DCD);
		}
		SIGCHGSW(sig, msr, RI);
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
603
604
605
	return (sig);
}

606
int
607
608
609
ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
	struct uart_bas *bas;
610
	int baudrate, divisor, error;
611
	uint8_t efr, lcr;
612
613

	bas = &sc->sc_bas;
614
	error = 0;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
615
	uart_lock(sc->sc_hwmtx);
616
617
618
619
620
621
622
623
624
625
	switch (request) {
	case UART_IOCTL_BREAK:
		lcr = uart_getreg(bas, REG_LCR);
		if (data)
			lcr |= LCR_SBREAK;
		else
			lcr &= ~LCR_SBREAK;
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
	case UART_IOCTL_IFLOW:
		lcr = uart_getreg(bas, REG_LCR);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, 0xbf);
		uart_barrier(bas);
		efr = uart_getreg(bas, REG_EFR);
		if (data)
			efr |= EFR_RTS;
		else
			efr &= ~EFR_RTS;
		uart_setreg(bas, REG_EFR, efr);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
	case UART_IOCTL_OFLOW:
		lcr = uart_getreg(bas, REG_LCR);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, 0xbf);
		uart_barrier(bas);
		efr = uart_getreg(bas, REG_EFR);
		if (data)
			efr |= EFR_CTS;
		else
			efr &= ~EFR_CTS;
		uart_setreg(bas, REG_EFR, efr);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
656
657
658
659
	case UART_IOCTL_BAUD:
		lcr = uart_getreg(bas, REG_LCR);
		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
		uart_barrier(bas);
660
661
		divisor = uart_getreg(bas, REG_DLL) |
		    (uart_getreg(bas, REG_DLH) << 8);
662
663
664
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
665
666
667
668
669
		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
		if (baudrate > 0)
			*(int*)data = baudrate;
		else
			error = ENXIO;
670
		break;
671
	default:
672
673
		error = EINVAL;
		break;
674
	}
Marcel Moolenaar's avatar
Marcel Moolenaar committed
675
	uart_unlock(sc->sc_hwmtx);
676
	return (error);
677
678
}

679
int
680
681
682
ns8250_bus_ipend(struct uart_softc *sc)
{
	struct uart_bas *bas;
683
	struct ns8250_softc *ns8250;
684
685
686
	int ipend;
	uint8_t iir, lsr;

687
	ns8250 = (struct ns8250_softc *)sc;
688
	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
689
	uart_lock(sc->sc_hwmtx);
690
	iir = uart_getreg(bas, REG_IIR);
691
692
693
694
695
696

	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
		(void)uart_getreg(bas, DW_REG_USR);
		uart_unlock(sc->sc_hwmtx);
		return (0);
	}
697
	if (iir & IIR_NOPEND) {
Marcel Moolenaar's avatar
Marcel Moolenaar committed
698
		uart_unlock(sc->sc_hwmtx);
699
		return (0);
700
	}
701
702
703
704
	ipend = 0;
	if (iir & IIR_RXRDY) {
		lsr = uart_getreg(bas, REG_LSR);
		if (lsr & LSR_OE)
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
705
			ipend |= SER_INT_OVERRUN;
706
		if (lsr & LSR_BI)
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
707
			ipend |= SER_INT_BREAK;
708
		if (lsr & LSR_RXRDY)
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
709
			ipend |= SER_INT_RXREADY;
710
	} else {
711
		if (iir & IIR_TXRDY) {
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
712
			ipend |= SER_INT_TXIDLE;
713
			uart_setreg(bas, REG_IER, ns8250->ier);
714
			uart_barrier(bas);
715
		} else
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
716
			ipend |= SER_INT_SIGCHG;
717
	}
718
719
720
	if (ipend == 0)
		ns8250_clrint(bas);
	uart_unlock(sc->sc_hwmtx);
721
	return (ipend);
722
723
}

724
int
725
726
727
ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
    int stopbits, int parity)
{
728
	struct ns8250_softc *ns8250;
729
	struct uart_bas *bas;
730
	int error, limit;
731

732
	ns8250 = (struct ns8250_softc*)sc;
733
	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
734
	uart_lock(sc->sc_hwmtx);
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
	/*
	 * When using DW UART with BUSY detection it is necessary to wait
	 * until all serial transfers are finished before manipulating the
	 * line control. LCR will not be affected when UART is busy.
	 */
	if (ns8250->busy_detect != 0) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop in case when the hardware is broken.
		 */
		limit = 10 * 1024;
		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
		    --limit)
			DELAY(4);

		if (limit <= 0) {
			/* UART appears to be stuck */
			uart_unlock(sc->sc_hwmtx);
			return (EIO);
		}
	}

757
	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
758
	uart_unlock(sc->sc_hwmtx);
759
	return (error);
760
761
}

762
int
763
764
ns8250_bus_probe(struct uart_softc *sc)
{
765
	struct ns8250_softc *ns8250;
766
767
	struct uart_bas *bas;
	int count, delay, error, limit;
768
	uint8_t lsr, mcr, ier;
769
	uint8_t val;
770

771
	ns8250 = (struct ns8250_softc *)sc;
772
773
774
775
776
777
778
779
780
	bas = &sc->sc_bas;

	error = ns8250_probe(bas);
	if (error)
		return (error);

	mcr = MCR_IE;
	if (sc->sc_sysdev == NULL) {
		/* By using ns8250_init() we also set DTR and RTS. */
781
		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
782
783
784
785
786
787
788
789
790
791
792
	} else
		mcr |= MCR_DTR | MCR_RTS;

	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
	if (error)
		return (error);

	/*
	 * Set loopback mode. This avoids having garbage on the wire and
	 * also allows us send and receive data. We set DTR and RTS to
	 * avoid the possibility that automatic flow-control prevents
793
	 * any data from being sent.
794
	 */
795
	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
796
797
798
799
	uart_barrier(bas);

	/*
	 * Enable FIFOs. And check that the UART has them. If not, we're
800
801
	 * done. Since this is the first time we enable the FIFOs, we reset
	 * them.
802
	 */
803
804
805
806
807
	val = FCR_ENABLE;
#ifdef CPU_XBURST
	val |= FCR_UART_ON;
#endif
	uart_setreg(bas, REG_FCR, val);
808
	uart_barrier(bas);
809
	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
810
811
812
813
814
815
		/*
		 * NS16450 or INS8250. We don't bother to differentiate
		 * between them. They're too old to be interesting.
		 */
		uart_setreg(bas, REG_MCR, mcr);
		uart_barrier(bas);
816
		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
817
818
819
820
		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
		return (0);
	}

821
822
823
824
825
	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
#ifdef CPU_XBURST
	val |= FCR_UART_ON;
#endif
	uart_setreg(bas, REG_FCR, val);
826
827
828
829
830
831
832
833
834
	uart_barrier(bas);

	count = 0;
	delay = ns8250_delay(bas);

	/* We have FIFOs. Drain the transmitter and receiver. */
	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
	if (error) {
		uart_setreg(bas, REG_MCR, mcr);
835
836
837
838
839
		val = 0;
#ifdef CPU_XBURST
		val |= FCR_UART_ON;
#endif
		uart_setreg(bas, REG_FCR, val);
840
841
842
843
844
845
846
		uart_barrier(bas);
		goto describe;
	}

	/*
	 * We should have a sufficiently clean "pipe" to determine the
	 * size of the FIFOs. We send as much characters as is reasonable
847
	 * and wait for the overflow bit in the LSR register to be
848
849
	 * asserted, counting the characters as we send them. Based on
	 * that count we know the FIFO size.
850
	 */
851
	do {
852
853
854
855
856
		uart_setreg(bas, REG_DATA, 0);
		uart_barrier(bas);
		count++;

		limit = 30;
857
858
859
860
861
862
863
		lsr = 0;
		/*
		 * LSR bits are cleared upon read, so we must accumulate
		 * them to be able to test LSR_OE below.
		 */
		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
		    --limit)
864
865
			DELAY(delay);
		if (limit == 0) {
866
			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
867
			uart_setreg(bas, REG_IER, ier);
868
			uart_setreg(bas, REG_MCR, mcr);
869
870
871
872
873
			val = 0;
#ifdef CPU_XBURST
			val |= FCR_UART_ON;
#endif
			uart_setreg(bas, REG_FCR, val);
874
875
876
877
			uart_barrier(bas);
			count = 0;
			goto describe;
		}
Ed Maste's avatar
Ed Maste committed
878
	} while ((lsr & LSR_OE) == 0 && count < 260);
879
	count--;
880
881
882
883
884
885
886

	uart_setreg(bas, REG_MCR, mcr);

	/* Reset FIFOs. */
	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);

 describe:
887
	if (count >= 14 && count <= 16) {
888
889
		sc->sc_rxfifosz = 16;
		device_set_desc(sc->sc_dev, "16550 or compatible");
890
	} else if (count >= 28 && count <= 32) {
891
892
		sc->sc_rxfifosz = 32;
		device_set_desc(sc->sc_dev, "16650 or compatible");
893
	} else if (count >= 56 && count <= 64) {
894
895
		sc->sc_rxfifosz = 64;
		device_set_desc(sc->sc_dev, "16750 or compatible");
896
	} else if (count >= 112 && count <= 128) {
897
898
		sc->sc_rxfifosz = 128;
		device_set_desc(sc->sc_dev, "16950 or compatible");
Ed Maste's avatar
Ed Maste committed
899
900
901
	} else if (count >= 224 && count <= 256) {
		sc->sc_rxfifosz = 256;
		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
902
	} else {
903
		sc->sc_rxfifosz = 16;
904
905
906
907
908
909
910
911
912
913
914
		device_set_desc(sc->sc_dev,
		    "Non-standard ns8250 class UART with FIFOs");
	}

	/*
	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
	 * Tx trigger. Also, we assume that all data has been sent when the
	 * interrupt happens.
	 */
	sc->sc_txfifosz = 16;

915
916
917
#if 0
	/*
	 * XXX there are some issues related to hardware flow control and
918
	 * it's likely that uart(4) is the cause. This basically needs more
919
920
921
	 * investigation, but we avoid using for hardware flow control
	 * until then.
	 */
922
923
924
925
926
	/* 16650s or higher have automatic flow control. */
	if (sc->sc_rxfifosz > 16) {
		sc->sc_hwiflow = 1;
		sc->sc_hwoflow = 1;
	}
927
#endif
928

929
930
931
	return (0);
}

932
int
933
934
935
936
937
938
939
ns8250_bus_receive(struct uart_softc *sc)
{
	struct uart_bas *bas;
	int xc;
	uint8_t lsr;

	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
940
	uart_lock(sc->sc_hwmtx);
941
942
943
944
	lsr = uart_getreg(bas, REG_LSR);
	while (lsr & LSR_RXRDY) {
		if (uart_rx_full(sc)) {
			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
945
			break;
946
		}
947
948
949
950
951
952
		xc = uart_getreg(bas, REG_DATA);
		if (lsr & LSR_FE)
			xc |= UART_STAT_FRAMERR;
		if (lsr & LSR_PE)
			xc |= UART_STAT_PARERR;
		uart_rx_put(sc, xc);
953
954
955
956
957
958
959
		lsr = uart_getreg(bas, REG_LSR);
	}
	/* Discard everything left in the Rx FIFO. */
	while (lsr & LSR_RXRDY) {
		(void)uart_getreg(bas, REG_DATA);
		uart_barrier(bas);
		lsr = uart_getreg(bas, REG_LSR);
960
	}
Marcel Moolenaar's avatar
Marcel Moolenaar committed
961
	uart_unlock(sc->sc_hwmtx);
962
963
964
 	return (0);
}

965
int
966
967
968
969
970
971
972
973
974
975
ns8250_bus_setsig(struct uart_softc *sc, int sig)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
	uint32_t new, old;

	bas = &sc->sc_bas;
	do {
		old = sc->sc_hwsig;
		new = old;
976
		if (sig & SER_DDTR) {
977
			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
978
		}
979
		if (sig & SER_DRTS) {
980
			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
981
982
		}
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
Marcel Moolenaar's avatar
Marcel Moolenaar committed
983
	uart_lock(sc->sc_hwmtx);
984
	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
985
	if (new & SER_DTR)
986
		ns8250->mcr |= MCR_DTR;
987
	if (new & SER_RTS)
988
989
990
		ns8250->mcr |= MCR_RTS;
	uart_setreg(bas, REG_MCR, ns8250->mcr);
	uart_barrier(bas);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
991
	uart_unlock(sc->sc_hwmtx);
992
993
994
	return (0);
}

995
int
996
997
998
999
1000
ns8250_bus_transmit(struct uart_softc *sc)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
	int i;
For faster browsing, not all history is shown. View entire blame