uart_dev_ns8250.c 25.9 KB
Newer Older
1
/*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 * Copyright (c) 2003 Marcel Moolenaar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

27
#include "opt_platform.h"
28
#include "opt_uart.h"
29

30
31
32
33
34
35
36
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
37
38
#include <sys/kernel.h>
#include <sys/sysctl.h>
39
40
#include <machine/bus.h>

41
42
43
44
45
46
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif

47
48
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
49
50
51
#ifdef FDT
#include <dev/uart/uart_cpu_fdt.h>
#endif
52
#include <dev/uart/uart_bus.h>
53
#include <dev/uart/uart_dev_ns8250.h>
54
#include <dev/uart/uart_ppstypes.h>
55
56

#include <dev/ic/ns16550.h>
57
58
59
60
61

#include "uart_if.h"

#define	DEFAULT_RCLK	1843200

62
63
64
65
66
67
68
69
70
71
/*
 * Set the default baudrate tolerance to 3.0%.
 *
 * Some embedded boards have odd reference clocks (eg 25MHz)
 * and we need to handle higher variances in the target baud rate.
 */
#ifndef	UART_DEV_TOLERANCE_PCT
#define	UART_DEV_TOLERANCE_PCT	30
#endif	/* UART_DEV_TOLERANCE_PCT */

72
static int broken_txfifo = 0;
73
SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
74
75
	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");

76
77
78
79
80
81
82
/*
 * Clear pending interrupts. THRE is cleared by reading IIR. Data
 * that may have been received gets lost here.
 */
static void
ns8250_clrint(struct uart_bas *bas)
{
83
	uint8_t iir, lsr;
84
85
86
87

	iir = uart_getreg(bas, REG_IIR);
	while ((iir & IIR_NOPEND) == 0) {
		iir &= IIR_IMASK;
88
89
90
91
92
		if (iir == IIR_RLS) {
			lsr = uart_getreg(bas, REG_LSR);
			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
				(void)uart_getreg(bas, REG_DATA);
		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
			(void)uart_getreg(bas, REG_DATA);
		else if (iir == IIR_MLSC)
			(void)uart_getreg(bas, REG_MSR);
		uart_barrier(bas);
		iir = uart_getreg(bas, REG_IIR);
	}
}

static int
ns8250_delay(struct uart_bas *bas)
{
	int divisor;
	u_char lcr;

	lcr = uart_getreg(bas, REG_LCR);
	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
	uart_barrier(bas);
110
	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
111
112
113
114
115
	uart_barrier(bas);
	uart_setreg(bas, REG_LCR, lcr);
	uart_barrier(bas);

	/* 1/10th the time to transmit 1 character (estimate). */
116
117
118
	if (divisor <= 134)
		return (16000000 * divisor / bas->rclk);
	return (16000 * divisor / (bas->rclk / 1000));
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
}

static int
ns8250_divisor(int rclk, int baudrate)
{
	int actual_baud, divisor;
	int error;

	if (baudrate == 0)
		return (0);

	divisor = (rclk / (baudrate << 3) + 1) >> 1;
	if (divisor == 0 || divisor >= 65536)
		return (0);
	actual_baud = rclk / (divisor << 4);

	/* 10 times error in percent: */
	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;

138
139
	/* enforce maximum error tolerance: */
	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
		return (0);

	return (divisor);
}

static int
ns8250_drain(struct uart_bas *bas, int what)
{
	int delay, limit;

	delay = ns8250_delay(bas);

	if (what & UART_DRAIN_TRANSMITTER) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop when the hardware is broken. Make the
		 * limit high enough to handle large FIFOs.
		 */
		limit = 10*1024;
		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
			DELAY(delay);
		if (limit == 0) {
			/* printf("ns8250: transmitter appears stuck... "); */
			return (EIO);
		}
	}

	if (what & UART_DRAIN_RECEIVER) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop when the hardware is broken. Make the
		 * limit high enough to handle large FIFOs and integrated
		 * UARTs. The HP rx2600 for example has 3 UARTs on the
		 * management board that tend to get a lot of data send
		 * to it when the UART is first activated.
		 */
		limit=10*4096;
		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
			(void)uart_getreg(bas, REG_DATA);
			uart_barrier(bas);
			DELAY(delay << 2);
		}
		if (limit == 0) {
			/* printf("ns8250: receiver appears broken... "); */
			return (EIO);
		}
	}

	return (0);
}

/*
 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
 * drained. WARNING: this function clobbers the FIFO setting!
 */
static void
ns8250_flush(struct uart_bas *bas, int what)
{
	uint8_t fcr;

	fcr = FCR_ENABLE;
201
202
203
#ifdef CPU_XBURST
	fcr |= FCR_UART_ON;
#endif
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
	if (what & UART_FLUSH_TRANSMITTER)
		fcr |= FCR_XMT_RST;
	if (what & UART_FLUSH_RECEIVER)
		fcr |= FCR_RCV_RST;
	uart_setreg(bas, REG_FCR, fcr);
	uart_barrier(bas);
}

static int
ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
    int parity)
{
	int divisor;
	uint8_t lcr;

	lcr = 0;
	if (databits >= 8)
		lcr |= LCR_8BITS;
	else if (databits == 7)
		lcr |= LCR_7BITS;
	else if (databits == 6)
		lcr |= LCR_6BITS;
	else
		lcr |= LCR_5BITS;
	if (stopbits > 1)
		lcr |= LCR_STOPB;
	lcr |= parity << 3;

	/* Set baudrate. */
	if (baudrate > 0) {
		divisor = ns8250_divisor(bas->rclk, baudrate);
		if (divisor == 0)
			return (EINVAL);
237
238
		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
		uart_barrier(bas);
239
240
		uart_setreg(bas, REG_DLL, divisor & 0xff);
		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
		uart_barrier(bas);
	}

	/* Set LCR and clear DLAB. */
	uart_setreg(bas, REG_LCR, lcr);
	uart_barrier(bas);
	return (0);
}

/*
 * Low-level UART interface.
 */
static int ns8250_probe(struct uart_bas *bas);
static void ns8250_init(struct uart_bas *bas, int, int, int, int);
static void ns8250_term(struct uart_bas *bas);
static void ns8250_putc(struct uart_bas *bas, int);
257
static int ns8250_rxready(struct uart_bas *bas);
258
static int ns8250_getc(struct uart_bas *bas, struct mtx *);
259

260
struct uart_ops uart_ns8250_ops = {
261
262
263
264
	.probe = ns8250_probe,
	.init = ns8250_init,
	.term = ns8250_term,
	.putc = ns8250_putc,
265
	.rxready = ns8250_rxready,
266
267
268
269
270
271
	.getc = ns8250_getc,
};

static int
ns8250_probe(struct uart_bas *bas)
{
272
	u_char val;
273

274
275
276
277
#ifdef CPU_XBURST
	uart_setreg(bas, REG_FCR, FCR_UART_ON);
#endif

278
279
280
281
	/* Check known 0 bits that don't depend on DLAB. */
	val = uart_getreg(bas, REG_IIR);
	if (val & 0x30)
		return (ENXIO);
282
283
284
285
286
287
	/*
	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
	 * chip, but otherwise doesn't seem to have a function. In
	 * other words, uart(4) works regardless. Ignore that bit so
	 * the probe succeeds.
	 */
288
	val = uart_getreg(bas, REG_MCR);
289
	if (val & 0xa0)
290
291
292
293
294
295
296
297
298
		return (ENXIO);

	return (0);
}

static void
ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
    int parity)
{
299
	u_char ier, val;
300
301
302
303
304
305

	if (bas->rclk == 0)
		bas->rclk = DEFAULT_RCLK;
	ns8250_param(bas, baudrate, databits, stopbits, parity);

	/* Disable all interrupt sources. */
306
307
308
309
310
311
	/*
	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
	 * UARTs split the receive time-out interrupt bit out separately as
	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
	 */
	ier = uart_getreg(bas, REG_IER) & 0xe0;
312
	uart_setreg(bas, REG_IER, ier);
313
314
315
	uart_barrier(bas);

	/* Disable the FIFO (if present). */
316
317
318
319
320
	val = 0;
#ifdef CPU_XBURST
	val = FCR_UART_ON;
#endif
	uart_setreg(bas, REG_FCR, val);
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
	uart_barrier(bas);

	/* Set RTS & DTR. */
	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
	uart_barrier(bas);

	ns8250_clrint(bas);
}

static void
ns8250_term(struct uart_bas *bas)
{

	/* Clear RTS & DTR. */
	uart_setreg(bas, REG_MCR, MCR_IE);
	uart_barrier(bas);
}

static void
ns8250_putc(struct uart_bas *bas, int c)
{
342
	int limit;
343

344
	limit = 250000;
345
	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
346
		DELAY(4);
347
	uart_setreg(bas, REG_DATA, c);
348
	uart_barrier(bas);
349
	limit = 250000;
350
	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
351
		DELAY(4);
352
353
354
}

static int
355
ns8250_rxready(struct uart_bas *bas)
356
357
{

358
	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
359
360
361
}

static int
362
ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
363
{
364
	int c;
365
366

	uart_lock(hwmtx);
367

368
369
	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
		uart_unlock(hwmtx);
370
		DELAY(4);
371
372
373
374
375
376
377
378
		uart_lock(hwmtx);
	}

	c = uart_getreg(bas, REG_DATA);

	uart_unlock(hwmtx);

	return (c);
379
380
381
382
383
384
385
386
387
388
389
390
391
392
}

static kobj_method_t ns8250_methods[] = {
	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
	KOBJMETHOD(uart_param,		ns8250_bus_param),
	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
393
394
	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
395
396
397
398
	{ 0, 0 }
};

struct uart_class uart_ns8250_class = {
399
	"ns8250",
400
401
	ns8250_methods,
	sizeof(struct ns8250_softc),
402
	.uc_ops = &uart_ns8250_ops,
403
	.uc_range = 8,
404
405
	.uc_rclk = DEFAULT_RCLK,
	.uc_rshift = 0
406
407
};

408
409
410
#ifdef FDT
static struct ofw_compat_data compat_data[] = {
	{"ns16550",		(uintptr_t)&uart_ns8250_class},
411
	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
412
413
414
415
416
	{NULL,			(uintptr_t)NULL},
};
UART_FDT_CLASS_AND_DEVICE(compat_data);
#endif

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/* Use token-pasting to form SER_ and MSR_ named constants. */
#define	SER(sig)	SER_##sig
#define	SERD(sig)	SER_D##sig
#define	MSR(sig)	MSR_##sig
#define	MSRD(sig)	MSR_D##sig

/*
 * Detect signal changes using software delta detection.  The previous state of
 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
 * new state of both the signal and the delta bits.
 */
#define SIGCHGSW(var, msr, sig)					\
	if ((msr) & MSR(sig)) {					\
		if ((var & SER(sig)) == 0)			\
			var |= SERD(sig) | SER(sig);		\
	} else {						\
		if ((var & SER(sig)) != 0)			\
			var = SERD(sig) | (var & ~SER(sig));	\
	}

/*
 * Detect signal changes using the hardware msr delta bits.  This is currently
 * used only when PPS timing information is being captured using the "narrow
 * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
 * by time the interrupt handler is invoked.  The hardware will latch the fact
 * that it changed in the delta bits.
 */
#define SIGCHGHW(var, msr, sig)					\
	if ((msr) & MSRD(sig)) {				\
		if (((msr) & MSR(sig)) != 0)			\
			var |= SERD(sig) | SER(sig);		\
		else						\
			var = SERD(sig) | (var & ~SER(sig));	\
451
452
	}

453
int
454
455
456
457
ns8250_bus_attach(struct uart_softc *sc)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
458
	unsigned int ivar;
459
460
461
462
463
464
#ifdef FDT
	phandle_t node;
	pcell_t cell;
#endif

#ifdef FDT
465
	/* Check whether uart has a broken txfifo. */
466
	node = ofw_bus_get_node(sc->sc_dev);
467
468
	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
		broken_txfifo =  cell ? 1 : 0;
469
#endif
470
471
472
473

	bas = &sc->sc_bas;

	ns8250->mcr = uart_getreg(bas, REG_MCR);
474
	ns8250->fcr = FCR_ENABLE;
475
476
477
#ifdef CPU_XBURST
	ns8250->fcr |= FCR_UART_ON;
#endif
478
479
480
481
482
483
484
485
486
487
488
489
	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
	    &ivar)) {
		if (UART_FLAGS_FCR_RX_LOW(ivar)) 
			ns8250->fcr |= FCR_RX_LOW;
		else if (UART_FLAGS_FCR_RX_MEDL(ivar)) 
			ns8250->fcr |= FCR_RX_MEDL;
		else if (UART_FLAGS_FCR_RX_HIGH(ivar)) 
			ns8250->fcr |= FCR_RX_HIGH;
		else
			ns8250->fcr |= FCR_RX_MEDH;
	} else 
		ns8250->fcr |= FCR_RX_MEDH;
490
491
492
493
494
495
496
497
498
499
500
501
502
	
	/* Get IER mask */
	ivar = 0xf0;
	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
	    &ivar);
	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
	
	/* Get IER RX interrupt bits */
	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
	    &ivar);
	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
	
503
504
505
506
507
	uart_setreg(bas, REG_FCR, ns8250->fcr);
	uart_barrier(bas);
	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);

	if (ns8250->mcr & MCR_DTR)
508
		sc->sc_hwsig |= SER_DTR;
509
	if (ns8250->mcr & MCR_RTS)
510
		sc->sc_hwsig |= SER_RTS;
511
512
513
	ns8250_bus_getsig(sc);

	ns8250_clrint(bas);
514
515
	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
	ns8250->ier |= ns8250->ier_rxbits;
516
517
	uart_setreg(bas, REG_IER, ns8250->ier);
	uart_barrier(bas);
518
519
520
521
522
523
524
525
526
527
528
529

	/*
	 * Timing of the H/W access was changed with r253161 of uart_core.c
	 * It has been observed that an ITE IT8513E would signal a break
	 * condition with pretty much every character it received, unless
	 * it had enough time to settle between ns8250_bus_attach() and
	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
	 * It's not understood why the UART chip behaves this way and it
	 * could very well be that the DELAY make the H/W work in the same
	 * accidental manner as before. More analysis is warranted, but
	 * at least now we fixed a known regression.
	 */
530
	DELAY(200);
531
532
533
	return (0);
}

534
int
535
536
ns8250_bus_detach(struct uart_softc *sc)
{
537
	struct ns8250_softc *ns8250;
538
	struct uart_bas *bas;
539
	u_char ier;
540

541
	ns8250 = (struct ns8250_softc *)sc;
542
	bas = &sc->sc_bas;
543
	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
544
	uart_setreg(bas, REG_IER, ier);
545
546
547
548
549
	uart_barrier(bas);
	ns8250_clrint(bas);
	return (0);
}

550
int
551
552
553
554
ns8250_bus_flush(struct uart_softc *sc, int what)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
555
	int error;
556
557

	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
558
	uart_lock(sc->sc_hwmtx);
559
	if (sc->sc_rxfifosz > 1) {
560
561
562
		ns8250_flush(bas, what);
		uart_setreg(bas, REG_FCR, ns8250->fcr);
		uart_barrier(bas);
563
564
565
		error = 0;
	} else
		error = ns8250_drain(bas, what);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
566
	uart_unlock(sc->sc_hwmtx);
567
	return (error);
568
569
}

570
int
571
572
ns8250_bus_getsig(struct uart_softc *sc)
{
573
	uint32_t old, sig;
574
575
	uint8_t msr;

576
577
578
579
580
581
	/*
	 * The delta bits are reputed to be broken on some hardware, so use
	 * software delta detection by default.  Use the hardware delta bits
	 * when capturing PPS pulses which are too narrow for software detection
	 * to see the edges.  Hardware delta for RI doesn't work like the
	 * others, so always use software for it.  Other threads may be changing
582
	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
583
584
585
586
	 * update without other changes happening.  Note that the SIGCHGxx()
	 * macros carefully preserve the delta bits when we have to loop several
	 * times and a signal transitions between iterations.
	 */
587
588
589
	do {
		old = sc->sc_hwsig;
		sig = old;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
590
		uart_lock(sc->sc_hwmtx);
591
		msr = uart_getreg(&sc->sc_bas, REG_MSR);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
592
		uart_unlock(sc->sc_hwmtx);
593
594
595
596
597
598
599
600
601
602
603
		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
			SIGCHGHW(sig, msr, DSR);
			SIGCHGHW(sig, msr, CTS);
			SIGCHGHW(sig, msr, DCD);
		} else {
			SIGCHGSW(sig, msr, DSR);
			SIGCHGSW(sig, msr, CTS);
			SIGCHGSW(sig, msr, DCD);
		}
		SIGCHGSW(sig, msr, RI);
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
604
605
606
	return (sig);
}

607
int
608
609
610
ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
	struct uart_bas *bas;
611
	int baudrate, divisor, error;
612
	uint8_t efr, lcr;
613
614

	bas = &sc->sc_bas;
615
	error = 0;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
616
	uart_lock(sc->sc_hwmtx);
617
618
619
620
621
622
623
624
625
626
	switch (request) {
	case UART_IOCTL_BREAK:
		lcr = uart_getreg(bas, REG_LCR);
		if (data)
			lcr |= LCR_SBREAK;
		else
			lcr &= ~LCR_SBREAK;
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
	case UART_IOCTL_IFLOW:
		lcr = uart_getreg(bas, REG_LCR);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, 0xbf);
		uart_barrier(bas);
		efr = uart_getreg(bas, REG_EFR);
		if (data)
			efr |= EFR_RTS;
		else
			efr &= ~EFR_RTS;
		uart_setreg(bas, REG_EFR, efr);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
	case UART_IOCTL_OFLOW:
		lcr = uart_getreg(bas, REG_LCR);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, 0xbf);
		uart_barrier(bas);
		efr = uart_getreg(bas, REG_EFR);
		if (data)
			efr |= EFR_CTS;
		else
			efr &= ~EFR_CTS;
		uart_setreg(bas, REG_EFR, efr);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
657
658
659
660
	case UART_IOCTL_BAUD:
		lcr = uart_getreg(bas, REG_LCR);
		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
		uart_barrier(bas);
661
662
		divisor = uart_getreg(bas, REG_DLL) |
		    (uart_getreg(bas, REG_DLH) << 8);
663
664
665
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
666
667
668
669
670
		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
		if (baudrate > 0)
			*(int*)data = baudrate;
		else
			error = ENXIO;
671
		break;
672
	default:
673
674
		error = EINVAL;
		break;
675
	}
Marcel Moolenaar's avatar
Marcel Moolenaar committed
676
	uart_unlock(sc->sc_hwmtx);
677
	return (error);
678
679
}

680
int
681
682
683
ns8250_bus_ipend(struct uart_softc *sc)
{
	struct uart_bas *bas;
684
	struct ns8250_softc *ns8250;
685
686
687
	int ipend;
	uint8_t iir, lsr;

688
	ns8250 = (struct ns8250_softc *)sc;
689
	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
690
	uart_lock(sc->sc_hwmtx);
691
	iir = uart_getreg(bas, REG_IIR);
692
693
694
695
696
697

	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
		(void)uart_getreg(bas, DW_REG_USR);
		uart_unlock(sc->sc_hwmtx);
		return (0);
	}
698
	if (iir & IIR_NOPEND) {
Marcel Moolenaar's avatar
Marcel Moolenaar committed
699
		uart_unlock(sc->sc_hwmtx);
700
		return (0);
701
	}
702
703
704
705
	ipend = 0;
	if (iir & IIR_RXRDY) {
		lsr = uart_getreg(bas, REG_LSR);
		if (lsr & LSR_OE)
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
706
			ipend |= SER_INT_OVERRUN;
707
		if (lsr & LSR_BI)
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
708
			ipend |= SER_INT_BREAK;
709
		if (lsr & LSR_RXRDY)
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
710
			ipend |= SER_INT_RXREADY;
711
	} else {
712
		if (iir & IIR_TXRDY) {
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
713
			ipend |= SER_INT_TXIDLE;
714
			uart_setreg(bas, REG_IER, ns8250->ier);
715
			uart_barrier(bas);
716
		} else
Marcel Moolenaar's avatar
MFp4:    
Marcel Moolenaar committed
717
			ipend |= SER_INT_SIGCHG;
718
	}
719
720
721
	if (ipend == 0)
		ns8250_clrint(bas);
	uart_unlock(sc->sc_hwmtx);
722
	return (ipend);
723
724
}

725
int
726
727
728
ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
    int stopbits, int parity)
{
729
	struct ns8250_softc *ns8250;
730
	struct uart_bas *bas;
731
	int error, limit;
732

733
	ns8250 = (struct ns8250_softc*)sc;
734
	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
735
	uart_lock(sc->sc_hwmtx);
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
	/*
	 * When using DW UART with BUSY detection it is necessary to wait
	 * until all serial transfers are finished before manipulating the
	 * line control. LCR will not be affected when UART is busy.
	 */
	if (ns8250->busy_detect != 0) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop in case when the hardware is broken.
		 */
		limit = 10 * 1024;
		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
		    --limit)
			DELAY(4);

		if (limit <= 0) {
			/* UART appears to be stuck */
			uart_unlock(sc->sc_hwmtx);
			return (EIO);
		}
	}

758
	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
759
	uart_unlock(sc->sc_hwmtx);
760
	return (error);
761
762
}

763
int
764
765
ns8250_bus_probe(struct uart_softc *sc)
{
766
	struct ns8250_softc *ns8250;
767
768
	struct uart_bas *bas;
	int count, delay, error, limit;
769
	uint8_t lsr, mcr, ier;
770
	uint8_t val;
771

772
	ns8250 = (struct ns8250_softc *)sc;
773
774
775
776
777
778
779
780
781
	bas = &sc->sc_bas;

	error = ns8250_probe(bas);
	if (error)
		return (error);

	mcr = MCR_IE;
	if (sc->sc_sysdev == NULL) {
		/* By using ns8250_init() we also set DTR and RTS. */
782
		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
783
784
785
786
787
788
789
790
791
792
793
	} else
		mcr |= MCR_DTR | MCR_RTS;

	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
	if (error)
		return (error);

	/*
	 * Set loopback mode. This avoids having garbage on the wire and
	 * also allows us send and receive data. We set DTR and RTS to
	 * avoid the possibility that automatic flow-control prevents
794
	 * any data from being sent.
795
	 */
796
	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
797
798
799
800
	uart_barrier(bas);

	/*
	 * Enable FIFOs. And check that the UART has them. If not, we're
801
802
	 * done. Since this is the first time we enable the FIFOs, we reset
	 * them.
803
	 */
804
805
806
807
808
	val = FCR_ENABLE;
#ifdef CPU_XBURST
	val |= FCR_UART_ON;
#endif
	uart_setreg(bas, REG_FCR, val);
809
	uart_barrier(bas);
810
	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
811
812
813
814
815
816
		/*
		 * NS16450 or INS8250. We don't bother to differentiate
		 * between them. They're too old to be interesting.
		 */
		uart_setreg(bas, REG_MCR, mcr);
		uart_barrier(bas);
817
		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
818
819
820
821
		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
		return (0);
	}

822
823
824
825
826
	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
#ifdef CPU_XBURST
	val |= FCR_UART_ON;
#endif
	uart_setreg(bas, REG_FCR, val);
827
828
829
830
831
832
833
834
835
	uart_barrier(bas);

	count = 0;
	delay = ns8250_delay(bas);

	/* We have FIFOs. Drain the transmitter and receiver. */
	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
	if (error) {
		uart_setreg(bas, REG_MCR, mcr);
836
837
838
839
840
		val = 0;
#ifdef CPU_XBURST
		val |= FCR_UART_ON;
#endif
		uart_setreg(bas, REG_FCR, val);
841
842
843
844
845
846
847
		uart_barrier(bas);
		goto describe;
	}

	/*
	 * We should have a sufficiently clean "pipe" to determine the
	 * size of the FIFOs. We send as much characters as is reasonable
848
	 * and wait for the overflow bit in the LSR register to be
849
850
	 * asserted, counting the characters as we send them. Based on
	 * that count we know the FIFO size.
851
	 */
852
	do {
853
854
855
856
857
		uart_setreg(bas, REG_DATA, 0);
		uart_barrier(bas);
		count++;

		limit = 30;
858
859
860
861
862
863
864
		lsr = 0;
		/*
		 * LSR bits are cleared upon read, so we must accumulate
		 * them to be able to test LSR_OE below.
		 */
		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
		    --limit)
865
866
			DELAY(delay);
		if (limit == 0) {
867
			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
868
			uart_setreg(bas, REG_IER, ier);
869
			uart_setreg(bas, REG_MCR, mcr);
870
871
872
873
874
			val = 0;
#ifdef CPU_XBURST
			val |= FCR_UART_ON;
#endif
			uart_setreg(bas, REG_FCR, val);
875
876
877
878
			uart_barrier(bas);
			count = 0;
			goto describe;
		}
879
	} while ((lsr & LSR_OE) == 0 && count < 130);
880
	count--;
881
882
883
884
885
886
887

	uart_setreg(bas, REG_MCR, mcr);

	/* Reset FIFOs. */
	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);

 describe:
888
	if (count >= 14 && count <= 16) {
889
890
		sc->sc_rxfifosz = 16;
		device_set_desc(sc->sc_dev, "16550 or compatible");
891
	} else if (count >= 28 && count <= 32) {
892
893
		sc->sc_rxfifosz = 32;
		device_set_desc(sc->sc_dev, "16650 or compatible");
894
	} else if (count >= 56 && count <= 64) {
895
896
		sc->sc_rxfifosz = 64;
		device_set_desc(sc->sc_dev, "16750 or compatible");
897
	} else if (count >= 112 && count <= 128) {
898
899
900
		sc->sc_rxfifosz = 128;
		device_set_desc(sc->sc_dev, "16950 or compatible");
	} else {
901
		sc->sc_rxfifosz = 16;
902
903
904
905
906
907
908
909
910
911
912
		device_set_desc(sc->sc_dev,
		    "Non-standard ns8250 class UART with FIFOs");
	}

	/*
	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
	 * Tx trigger. Also, we assume that all data has been sent when the
	 * interrupt happens.
	 */
	sc->sc_txfifosz = 16;

913
914
915
#if 0
	/*
	 * XXX there are some issues related to hardware flow control and
916
	 * it's likely that uart(4) is the cause. This basically needs more
917
918
919
	 * investigation, but we avoid using for hardware flow control
	 * until then.
	 */
920
921
922
923
924
	/* 16650s or higher have automatic flow control. */
	if (sc->sc_rxfifosz > 16) {
		sc->sc_hwiflow = 1;
		sc->sc_hwoflow = 1;
	}
925
#endif
926

927
928
929
	return (0);
}

930
int
931
932
933
934
935
936
937
ns8250_bus_receive(struct uart_softc *sc)
{
	struct uart_bas *bas;
	int xc;
	uint8_t lsr;

	bas = &sc->sc_bas;
Marcel Moolenaar's avatar
Marcel Moolenaar committed
938
	uart_lock(sc->sc_hwmtx);
939
940
941
942
	lsr = uart_getreg(bas, REG_LSR);
	while (lsr & LSR_RXRDY) {
		if (uart_rx_full(sc)) {
			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
943
			break;
944
		}
945
946
947
948
949
950
		xc = uart_getreg(bas, REG_DATA);
		if (lsr & LSR_FE)
			xc |= UART_STAT_FRAMERR;
		if (lsr & LSR_PE)
			xc |= UART_STAT_PARERR;
		uart_rx_put(sc, xc);
951
952
953
954
955
956
957
		lsr = uart_getreg(bas, REG_LSR);
	}
	/* Discard everything left in the Rx FIFO. */
	while (lsr & LSR_RXRDY) {
		(void)uart_getreg(bas, REG_DATA);
		uart_barrier(bas);
		lsr = uart_getreg(bas, REG_LSR);
958
	}
Marcel Moolenaar's avatar
Marcel Moolenaar committed
959
	uart_unlock(sc->sc_hwmtx);
960
961
962
 	return (0);
}

963
int
964
965
966
967
968
969
970
971
972
973
ns8250_bus_setsig(struct uart_softc *sc, int sig)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
	uint32_t new, old;

	bas = &sc->sc_bas;
	do {
		old = sc->sc_hwsig;
		new = old;
974
		if (sig & SER_DDTR) {
975
			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
976
		}
977
		if (sig & SER_DRTS) {
978
			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
979
980
		}
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
Marcel Moolenaar's avatar
Marcel Moolenaar committed
981
	uart_lock(sc->sc_hwmtx);
982
	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
983
	if (new & SER_DTR)
984
		ns8250->mcr |= MCR_DTR;
985
	if (new & SER_RTS)
986
987
988
		ns8250->mcr |= MCR_RTS;
	uart_setreg(bas, REG_MCR, ns8250->mcr);
	uart_barrier(bas);
Marcel Moolenaar's avatar
Marcel Moolenaar committed
989
	uart_unlock(sc->sc_hwmtx);
990
991
992
	return (0);
}

993
int
994
995
996
997
998
999
1000
ns8250_bus_transmit(struct uart_softc *sc)
{
	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
	struct uart_bas *bas;
	int i;

	bas = &sc->sc_bas;
For faster browsing, not all history is shown. View entire blame